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The topology of potential energy surfaces provides a unified framework for the 
study of individual molecular properties, all conformational changes as well as chemical 
reactions. Molecular behavior, electronic and vibrational properties, conformational 
freedom, reactivity bond formation and bond breaking are all energy dependent, and the 
potential energy surface approach provides an elegant, conceptually convenient, although 
rather complicated representation of this energy dependence. Topology as a mathematical 
tool is exceptionally suitable for the extraction of the most essential features of complicated 
representations. By applying topological methods for potential surface analysis, a new, 
global perspective of many aspects of chemist~ emerges. Some of these topological 
results also have important practical, computational significance. A family of new 
topological rules and symmetry relations will be adapted for applications in low dimensional 
relaxed cross-sections of configuration spaces, with a special emphasis on their role in 
the search for critical points, primarily energy minima and saddle points of transition 
structures of potential energy surfaces and hypersurfaces. 

1. Introduction 

When considering distorted forms of molecules, one must make a choice of 
reference form against which all other forms are compared. In a classical model of 
molecules, with a geometrically defined ideal form, all other forms may be compared 
to the ideal one. However, molecules are quantum-mechanical, topological entities 
which do not possess a geometrically defined nuclear configuration in the classical 
sense. The nuclei, just as the electrons, are subject to the Heisenberg uncertainty, 
hence the concept of nuclear position within a molecule is not a rigorously valid 
one. Nevertheless, by taking a pragmatic approach involving a form of the Born-  
Oppenheimer approximation for geometrically defined nuclear positions and introducing 
quantum mechanical uncertainty by defining families of such nuclear configurations 
as open sets of a topological space [1], one may use geometrical concepts without 
violating the quantum mechanical nature of the model. This model is compatible 
with the concept of equilibrium nuclear configuration for energetically stable 
conformations of molecules. The equilibrium nuclear configuration may be used as 
reference for distortions. 
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The problems of molecular deformations are related to energetic properties 
and the study of molecular identity requires the explicit consideration of the 
deformability of molecules. This requirement naturally leads to the potential energy 
surface model and to the global analysis of deformability of a whole range of formal 
nuclear arrangements. In a global approach to the study of molecular identity, it is 
advantageous to use the nuclear configuration space approach where all possible 
arrangements of a given stoichiometric family of nuclei are considered. Each 
stoichiometric family of chemical species is defined by a set of nuclei which may 
take any relative arrangement. These arrangements include all isomers, reaction 
intermediates, transition structures, and decomposition products of all molecules 
with a given atomic composition, as well as all distorted conformations of the 
above. 

One may regard nuclear arrangements obtained from one another by rigid 
translation and rigid rotation as equivalent, and focus on the internal configuration 
K of the arrangement. The family of all possible internal configurations of a set of 
nuclei may be thought to form an internal configuration space. The space we shah 
use is the metric space M of internal configurations [ 1 ]. Since relative arrangements 
of N > 3 nuclei can be described by 3 N -  6 internal coordinates, the dimension of 
M is 3 N -  6. The metric of M is interpreted as the distance d(K, K') between any 
two points K and K'  of the space M, representing a measure of dissimilarity of the 
corresponding two internal nuclear configurations K and K'. Here we use the same 
notation, K, for the internal configuration (the 3D relative arrangement of the 
nuclei) and for the point representing it within the configuration space M. 

By considering a given electronic state and infintely slow motion for the 
nuclei, a potential energy value can be assigned to each nuclear configuration K; 
this defines a potential energy hypersurface E(K) over M. A point K of M where 
the gradient of E(K) vanishes (where the tangent hyperplane to E(K) is "horizontal") 
is called a critical point, denoted by K(~, i). Here, ~ is the critical point index (and 
not the "order of critical point" as it is sometimes incorrectly called), defined as 
the number of negative eigenvalues of the Hessian matrix H(K(A., i)) of second 
derivatives of the energy, while i is a serial index. 

For a given potential energy hypersurface E(K), the range of deformations 
that preserves chemical identity of a chemical species defines a subset of the nuclear 
configuration space M. This subset, regarded as representing the chemical species 
within M, can be chosen as a catchment region C(~, i) of the corresponding potential 
energy hypersurface. Each catchment region C(~, i) is defined as the collection of 
all those nuclear configurations K from where the path of an infinitely slow relaxation 
(a steepest descent path in a mass-weighted coordinate system) leads to a common 
critical point K(&, i). (See original references in [1] and [2].) A catchment region 
C(0, i) of a minimum point K(0, i) represents the ith stable molecular species of 
the given stoichiometry and of the electronic state associated with the given potential 
energy hypersurface E(K). The steepest descent paths from all points of the catchment 
region C(0, i) lead to the minimum point K(0, i); the dimension of C(0, i ) i s  
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3 N -  6. A ( 3 N -  7)-dimensional catchment region C(1 , j )  of a saddle point K(1 , j )  
of critical point index & = 1 represents the j th  transition structure. Catchment regions 
C(&, i) of  critical points K(~,, i) of higher indices, & > 1, and of dimensions lower 
than 3 N -  7, are of lesser direct chemical significance (and are not true chemical 
species); nevertheless, for the sake of uniformity in the terminology, they are also 
referred to as formal chemical species. 

Let us denote by Gk the collection of all nuclear configurations of  M which 
have a given point symmetry group gk. Such a set Gk may be disconnected, since 
it is possible that two nuclear configurations K 1 and K2 of the same point symmetry 
cannot be connected by a path with all configurations K along it having the same 
symmetry. In such cases, we shall consider the maximum connected components 
Gkj of each set Gk. Both the catchment regions C()L i) of each potential energy 
hypersurface E(K) and the configuration space symmetry domains G~j generate 
rigorous partitionings of the entire nuclear configuration space M into subsets. 
Whereas there is a one-to-one correspondence between critical points K(&, i) and 
catchment regions C(&, i), there is no such simple correspondence for the Symmetry 
partitioning, although other useful relations can be found [2]. 

An important earlier result is the rule on the conservation of point symmetry 
elements along segments of steepest descent paths falling between critical points [3], 
as well as the conservation of framework group elements along such segments (a 
framework group element is a pair of point symmetry elements and the nuclear 
permutation that reverses its effect). This result is valid if the potential surface is 
defined in terms of mass-weighted coordinates, and it has been used to derive some 
global relations within the nuclear configuration space M [1,2]. 

Molecular point symmetry is an important tool for the characterization of 
nuclear configurations, and it serves as a guide in the search for critical points of 
potential energy hypersurfaces. In an earlier study [2], a global approach to nuclear 
point symmetry within a configuration space was proposed, leading to new rules. 
Versions of these rules, restricted to subsets (relaxed cross-sections) of the nuclear 
configuration space, were also described but only an outline of their proofs was 
given [2]. In particular, theorems 1 -5  we shall describe in this study have been 
listed, without detailed proof, as theorems 6 - 1 0  of ref. [2]. In the present study, 
we shall provide an explicit formulation and detailed proof of  all of these theorems, 
including the relaxed cross-section catchment region point symmetry theorem and 
the relaxed cross-section vertical point symmetry theorem. In addition, some new 
rules will be derived. 

2. Relaxed cross-sections and some of  their properties 

First we shall review the definition and some properties of relaxed cross- 
sections. The motivation for studying relaxed cross-sections of a configuration 
space M and of an energy hypersurface E(K) is that not all internal coordinates of 
a molecule participate equally in some chemical processes. The changes in some 
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coordinates, such as C - H  bond lengths in methyl groups, are often unimportant or 
negligible. This allows the reduction of the dimension of the problem, that can be 
accomplished by taking relaxed cross-sections. 

We choose an electronic state and consider chemical processes along the 
corresponding potential energy surface E(K). We assume that a subset A of the 
configuration space M is provided with a local coordinate system, where the first 
n of the internal coordinates (n < 3 N - 6 )  are the chemically important active 
coordinates for the chemical processes considered, whereas the remaining n'  coordinates 
(n' = 3 N -  6 - n) are taken as the passive coordinates. For each possible fixed choice 
of the n active coordinates within set A, the n'  passive coordinates can be chosen 
so that a fully relaxed n-dimensional surface C is obtained, where C is characterized 
by its points having zero gradient components orthogonal to C. Note that simple 
energy minimization along the passive coordinates does not necessarily lead to such 
a relaxed surface C, since along C the passive coordinates may also change, although, 
by assumption, only slightly. The condition of vanishing energy gradients along the 
passive coordinates leads to a fully relaxed cross-section C only if C is everywhere 
locally orthogonal to the subspace of the passive coordinates [2], a condition only 
seldom fulfilled. If all of the nuclear configurations K corresponding to the passive 
coordinates selected by the correct relaxation condition are found within set A, then 
this set C is called an n-dimensional relaxed cross-section of A according to the 
given potential energy surface E(K). 

At every point K in the n-dimensional surface C, the gradient vector is 
tangential to C; consequently, the "gradient flux" is zero across C. The potential 
energy hypersurface E(K) may be restricted to this set C, and E(K) can be regarded 
as an energy function of the n active coordinates. This energy function is called an 
n-dimensional relaxed cross-section of the original potential energy surface E(K). 

Evidently, a relaxed cross-section C depends on the choice of the electronic 
state, that is, on the potential surface E(K), since relaxation is defined along E(K). 
On the other hand, one may repeat the relaxation procedure of the passive coordinates 
for several electronic states using the same collection of n active coordinates. In this 
case, one obtains a series of cross sections C/, one for the potential energy surface 
Ei(K) of each electronic state. These relaxed cross-sections C,. may differ only in 
the passive coordinates. The n (active) components of all coordinate vectors in each 
Ci are common for all of the electronic states, and they generate a common set C n 
of n-dimensional vectors. Individually, each cross-section Ci is a (possibly) curved 
surface that cuts across the configuration space M, and it depends on the potential 
energy surface (the electronic state) according to which it is "relaxed". On the other 
hand, the projection C n of each of these sets Ci onto the n-dimensional subspace 
of the active coordinates is the same, that is, C n is independent of the potential 
energy hypersurface Ei(K ) (electronic state) used for relaxation. Consequently, all 
these relaxed cross-sections Ci of potential energy surfaces Ei(K ) of all electronic 
states are defined over the same set C n of n-dimensional coordinate vectors, that 
is, they are functions of the same n active coordinates. 
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It is important to realize that an n-dimensional surface C of points with zero 
gradient components orthogonal to C does not require that the energy is near 
minimum with respect to all of the passive coordinates. In a relaxed cross-section 
C, the energy may be near maximum along some of the passive coordinates. A rope 
relaxing along a mountain ridge is such as example. 

If the set A is finite, then a cross-section C of A is also limited to a finite 
configurational domain, hence it may have a boundary. If the cross-section C itself 
has no boundary, then C" may cut across the entire configuration space; in this case, 
C and its projection C n to the subspace of the active coordinates represent a complete 
relaxed cross-section. No steepest descent path can leave a complete relaxed cross- 
section; however, if the cross-section is not complete, then it is possible for a 
steepest descent path to leave it, but only along a direction locally tangential to the 
cross-section at one of its boundary points. 

If the point symmetry domain G'~j of C" has no points falling on the boundary 
of  C n, then Ginj is an interior point symmetry domain of C ". Since a complete relaxed 
cross-section C" has no boundary, all its point symmetry domains Gi~ a~re interior 
symmetry domains. 

If a critical point K(A, i) falls within a relaxed cross-section C n, then the 
catchment region Cn(X, i) of the relaxed cross-section C n is defined as the collection 
of all the nuclear configurations of C n from where steepest descent paths lead to 
the critical point K(~,, i). This concept is justified by the following two considerations. 
A steepest descent path passing through any point K of a relaxed cross-section C 
either stays within C, or it leaves C at the boundary of C along a direction of 
tangential extension of C. Furthermore, all points K which fall within the intersection 
of the catchment region C(&, i) of  the full configuration space M and the relaxed 
cross-section C", and also have the property that the entire steepest descent path 
segment between K and K(~, i) is contained within C ", form a connected set. 

The set Cn(A, i) is an interior catchment region of C" if C"(A, i) is a catchment 
region of C n that has no points falling on the boundary of C n. All catchment regions 
of  a complete relaxed cross-section are interior catchment regions. As a function 
of the size and shape of  a relaxed cross-section C ~, the common parts of some 
catchment region C(&, i) of M and the relaxed cross-section C" may be disconnected, 
implying that their common parts do not necessarily coincide with the corresponding 
catchment region Cn(;~, i) of the relaxed cross-section C". For a complete relaxed 
cross-section C n, the common part of C(X, i) and C" is Cn(&, i). 

Note that the term "relaxed cross-section" is often used in the literature somewhat 
incorrectly for not fully relaxed cross-section, where simple energy minimization 
along some of the less important coordinates is used as a criterion. Unless these 
coordinates are constant throughout the cross-section, this criterion does not lead to 
a truly relaxed cross-section, and the results are often dependent on the coordinate 
representation. A more detailed discussion of this problem is given in [4]. 

For the sake of simplicity, we shall assume that the potential energy hyper- 
surfaces are twice differentiable in all the domains considered. This condition is 
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usually satisfied, at conical intersections and at other special points, even first 
derivatives may fail to exist. Note that conical intersection points often behave as 
extreme cases of critical points, and some of the global point symmetry theorems 
have been generalized for some non-differentiable potential surfaces having 
conical intersections [5]. 

3. Relaxed cross-section symmetry theorems 

Consider a catchment region C"($, i) of a relaxed cross-section C" The critical 
point K(~, i) is the only critical point within C"(~,, i). From all other points K of 
Cn($, i), the path of steepest descent must stay within the relaxed cross-section C", 
it must stay within C~($, i), and it leads to K()~, i). By the conservation of poin t 
symmetry elements along steepest descent paths between non-critical points, all 
point symmetry elements must also be present arbitrarily close to the critical point 
K(A., i). Hence, the configuration represented by the critical point K($, i) must have 
all the point symmetry elements of all configurations represented by points K of the 
catchment region Cn(~, i). Consequently, the point symmetry group of the configuration 
at the critical point K()~, i) must contain the point symmetry groups of all other 
configurations K of the catchment region C~(/~, i) of the relaxed cross-section C ~ 
as subgroups. If one interprets the term "higher point symmetry" by group-subgroup 
relations, and regards each group as one of its (trivial) subgroups, then the above 
is a direct proof of the relaxed cross-section catchment region point symmetry 
theorem: 

THEOREM 1 

Within each catchment region Cn()~, i) of relaxed cross-section C", the nuclear 
configuration corresponding to the critical point K(;L, i) has the highest point symmetry. 

As in the general case of catchment regions within the full configuration space 
M [2], the theorem does not imply that the critical point K(/~, i) is the only point 
within the catchment region Cn(~., i) of the relaxed cross-section C n that has the 
highest point symmetry. Some other points K, and possibly all points of the relaxed 
cross-section catchment region C'~(A,, i) may have the same, highest point symmetry. 

Also note that, similarly to the case of the full configuration space [2], this 
theorem holds for the potential surfaces, relaxed cross-sections, and catchment 
regions of all electronic states of neutral and all charged species of the given 
stoichiometric family. 

It is not necessary for Cn(A., i) to be an interior catchment region of the 
relaxed cross-section Cn; it is sufficient that the catchment region C~(3,, i), hence 
its critical point K(A,, i), exists within C". 

The following relaxed cross-section catchment region minimum theorem may 
be regarded as a partial converse of the above relaxed cross-section catchment 
region point symmetry theorem: 
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THEOREM 2 

If within a catchment region C"(~, i) of a relaxed cross-section C" there is 
a point K with a symmetry element R not present anywhere else in the catchment 
region C"(~,, i), then this point K must have the lowest energy value within the 
catchment region, and point K is the critical point K(X, i) of C"(~,, i). 

Proof 

Each catchment region Cn(~, i) of a relaxed cross-section C" contains precisely 
one critical point K(~,, i). This critical point K(~,, i) is the endpoint of all steepest 
descent paths originating anywhere within C(&, i); consequently, K()~, i) must have 
the lowest energy within Cn(~,, i). If a point K of the catchment region C"(~,, i) has 
a symmetry element R then, by the conservation of symmetry along steepest descent 
paths, this symmetry element must also be present at the critical point K(&, i). If 
this symmetry element R occurs only at point K of C"(~, i), then K must be identical 
to K(&, i) and then point K must have the lowest energy within the catchment region 
Cn(,~, i) of the relaxed cross-section C n. []  

This theorem also holds for the potential surfaces, relaxed cross-sections, and 
catchment regions of all electronic states of neutral and all charged species of the 
given stoichiometric family. 

The following three theorems are the relaxed cross-section versions of the 
vertical symmetry theorems of ref. [2]. The terminology refers to the convention 
of regarding energy as a formal "vertical" dimension over a nuclear configuration 
space M. Similarly, if energy and symmetry relations restricted to a relaxed cross- 
section C n are studied, then energy may be regarded as a vertical dimension over 
the relaxed cross-section C n. 

These theorems describe symmetry and critical point relations between various 
parts of a relaxed cross-section C n. Choose any surface B '~ within C n that divides 
the relaxed cross-section C n into two parts, C'~ and C~. We assume that the set C'~ 
of configurations contains the chosen surface B" as its boundary. 

P We denote by ~ a family of symmetry elements R'I, R~ . . . . .  R e, present for 
all nuclear configurations K '  along B" 

~P~ = {R], R~ . . . . .  R~}. (1) 

We select a nuclear configuration K from set C'~. Next, we select a family R of 
symmetry elements R1, R2 . . . . .  Rq which are present at point K: 

R= {R 1, R E . . . . .  Rq}. (2) 

Note that the theorems we shall prove are also valid if one includes only some of 
the eligible symmetry elements in families R' and R.  If, however, all eligible 
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symmetry elements are included in families R' and R,  then both families of  the 
corresponding symmetry operators are groups (with the usual group multiplication 
of symmetry operators). 

The vertical point syrru~netry theorem of relaxed cross-sections states the following: 

THEOREM 3 

If either 

(i) no configuration along B" possesses the family R o f  symmetry elements, or 

(ii) configuration K does not have all the symmetry elements of  family ~ ,  

then the family C]' of relaxed cross-section configurations must contain at least one 
critical point for the potential energy surface of each electronic state (or each 
possible overall electronic charge). 

Note that if either one of conditions (i) and (ii) is fulfilled, then K must be 
an interior point of subset C~' of the relaxed cross-section C n, that is, configuration 
K cannot fall on the boundary B ". 

Proof 
Choose a potential energy surface corresponding to any one of the possible 

electronic states. There are two possibilities: 

(a) If the chosen point K of set C~' is a critical point of this potential surface, 
then for this potential surface the statement of  the theorem follows. 

(b) If K is not a critical point, then there must exist a steepest descent path 
that passes through K. Since K is a point of the relaxed cross-section C n, a path of  
steepest descent cannot leave C n, except possibly along a locally tangential direction 
at a point of  the boundary of C n, if the relaxed cross section C n is not a complete 
one. We now show a much stronger restriction: this steepest descent path cannot 
leave set C~' either. We shall prove this by contradiction. First we recall that C]' 
contains its boundary B ". If the path would leave set C]', then it would have to reach 
the boundary B" of  C~ at some point K'. This point K'  could not be a critical point 
itself, since then the path would terminate there, hence the path could not leave C]'. 
If the path would leave set C]', then this point K" could not be an ordinary, non- 
critical point either, since then the conservation of symmetry elements along steepest 
descent paths would imply that configurations K and K' would have precisely the 
same symmetry elements. However, this would contradict both of the conditions (i) 
and (ii) of  the theorem. Consequently, there exists no point K'  at the boundary B" 
that can be reached by the steepest descent path from K. We conclude that the path 
must terminate within set C]'. Since each steepest descent path must terminate at 
a critical point, set C~' must contain at least one critical point of the potential energy 
surface of  the chosen electronic state. Since the overall electronic charge and the 
electronic state have been chosen arbitrarily, this conclusion is valid for each electronic 
state; this proves the theorem. [] 
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Neither the exact location nor the type of the critical point is implied by the 
theorem. Furthermore, there may be more than one critical point within the subset 
C]' of the relaxed cross-section C n, and some critical points may remain undetected 
by the theorem. 

For different overall charges and different electronic states, the critical points 
detected by the theorem may have different locations within C]', and these critical 
points may be of different types, for example, a minimum on one and a saddle point 
on another potential surface over the same subset C~' of the relaxed cross-section 
C n. It is important to point out that the chosen test point K itself does not have to 
be a critical point for any one of the potential surfaces. 

For the next result, choose a symmetry element R of some interior point K 
of subset C]', and take the family SB of all symmetry elements of nuclear configurations 
occurring along boundary B ". 

The vertical symmetry element theorem of relaxed cross-sections relies on a 
set of conditions different from those of the previous theorem to reach a similar (but 
not identical) conclusion. This theorem states the following: 

THEOREM 4 

If the subset C~ of the relaxed cross-section C" contains a configuration K 
that has a symmetry element R not present in the family SB of all point symmetry 
elements occurring along B ", then the interior of C]' must contain at least one 
critical point for the potential energy surface of each electonic state (of each possible 
overall electronic charge). 

Theorems 3 and 4 differ on two main points. If there exist two point symmetry 
groups along boundary B ", neither of which is a subgroup of the other, then it is 
impossible to choose the class R'  of theorem 3 to coincide with family SB. 
Theorem 3 detects the existence of a critical point somewhere in set C]'. As allowed 
by condition (ii) (but not by condition (i)), this critical point may fall on the 
boundary B n. Theorem 4 is somewhat stronger, since the critical point detected must 
fall within the interior of C~, that is, it cannot fall on the boundary B n. 

Proof 
Choose a potential surface defined over the relaxed cross-section C n, and a 

point K of  set C]' that has a symmetry element R not present in family SB. There 
are two cases: 

(a) If K is a critical point, then for this potential surface the statement of the 
theorem follows. 

(b) If K is not a critical point, then there exists a steepest descent path 
passing through K. A general steepest descent path cannot leave the relaxed cross- 
section C n, except possibly along a locally tangential direction at a point of the 
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boundary of  C n, if the relaxed cross-section C" is not a complete one. This steepest 
descent path cannot leave subset C]', it cannot even reach the boundary B n of C]' 
either, since then it would have to have a common point with B n, and then the 
family SB would contain all the symmetry elements of K, including R. This contradicts 
the conditions of the theorem. Consequently, the steepest descent path must terminate 
within the interior of subset C]'. Since each steepest descent path must terminate 
at a critical point, the interior of set C~' must contain at least one critical point of  
the potential energy surface of  each electronic state. [] 

The next theorem may be regarded as a partial "converse" of theorems 3 
and 4. Information on the lack of presence of critical points within a given domain 
of a relaxed cross-section C ~ (for some electronic state) can be used to obtain global 
conclusions concerning symmetry within an entire subset C]' of the relaxed cross- 
section C n. 

THEOREM 5 

The lack of a critical point within C~' for the potential energy hypersurface 
E(K) of any electronic state of any overall charge implies that no interior point K 
of C~' can have any symmetry element not present at the boundary B ". 

(If a point symmetry group gi contains the family SB of all the symmetry 
operators of  symmetry elements occurring at various points of the boundary surface 
B ", and if there exists an electronic state (of any net charge) with a potential surface 
that has no critical point within set C~, then no point K of set C]' can have a point 
symmetry group g, different from gi, g ~ gi, that contains gi as a proper subgroup.) 

Proof 

If C~ contains no critical point for a potential surface, then for this surface 
the steepest descent paths from all points of C~' must leave C]' passing through its 
boundary B n. Consequently, all symmetry elements present at various points of C]' 
must occur somewhere along the boundary B n. [] 

An interesting corollary of this theorem is the following. If the potential 
surface of  one electronic state has a critical point within C~, then this critical point 
may have additional symmetry elements which are nowhere present along the boundary 
B n. If, however, there is another electronic state with a potential surface that has 
no critical point within set C~', then the critical point of the first potential surface 
cannot have a new symmetry element either, in addition to those occurring along 
the boundary B n. 

Additional results can be derived if one considers the symmetry domain 
partitioning of a relaxed cross-section. An interior point symmetry domain Gk~. of 
a relaxed cross-section C n is defined as a maximum connected component  of the 



P.G. Mezey, Potential surface topology 89 

intersection of Gk with the relaxed cross-section C n, having no common point with 
the boundary of C n. 

The following three results are generalizations of the supplementary material 
for ref. [2]. The generalizations below provide information on both the lowest and 
the highest energy points within a point symmetry domain of a relaxed cross-section. 

An interesting property of interior point symmetry domains G~i of a relaxed 
cross-section C" is described by the following theorem: 

THEOREM 6 

If G'~j is an interior point symmetry domain of a relaxed cross-section C", and 
if the corresponding point symmetry group gk is not a subgroup of any other point 
symmetry group occurring within C n, then 

(i) G~j must contain a critical point, 

(ii) the lowest energy point within symmetry domain Gk~ is a critical point, and 

(iii) the highest energy point within symmetry domain G~,j is also a critical point. 

Proof 
Since G'~j is an interior point symmetry domain of C n, and as a consequence 

of the restriction on group gk, no other point symmetry domain Ginm on the boundary 
of G'~j may have all the symmetry elements present in G'~j, all steepest descent paths 
as well as all steepest ascent paths from Gk~j must terminate within G'~j. Consequently, 
G'~j must contain at least one critical point. Furthermore, one of the critical points 
must have the lowest energy within G'~j and one of the critical points must have the 
highest energy within Gk~. [] 

The following high-low rule and high-high rule are two of the consequences 
of  the above theorem for complete relaxed cross-sections: 

HIGH-LOW RULE 

If within a complete relaxed cross-section C n there exists a highest point 
symmetry group gk (that is, if all other point symmetry groups occurring within C ~ 
are subgroups of gk), then within C ~ there must exist a critical point which has point 
symmetry g~, and also the lowest energy among all points of C ~ having this highest 
point symmetry. 

By contrast, for a point symmetry group which is not the highest within C n 
even the existence of a critical point within C" and having this symmetry is uncertain. 

HIGH-HIGH RULE 

If within a complete relaxed cross-section C n there exists a highest point 
symmetry group g~, then within C n there must exist a critical point which has point 
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symmetry gk, and also the highest energy among all points of C n having this highest 
point symmetry. 

4. Conclusions 

Relaxed cross-sections of a nuclear configuration space M, relaxed according 
to a specified potential energy hypersurface E(K), provide computational advantages 
due to their reduced dimension, yet they carry the most essential chemical information. 
In this study, detailed proofs have been given for a series of relaxed cross-section 
symmetry theorems interrelating energetic properties, the presence of critical points 
of the potential energy hypersurfaces, and geometric properties, the point symmetry 
groups of various nuclear configurations. These theorems provide fundamental 
constraints in the search for critical points, where a preliminary (inexpensive) 
computation of point symmetries within a configurational domain, followed by 
applications of the theorems, can provide information on the presence of a critical 
point within a given subset of configurations. 

All theorems and rules described in this study can be generalized by simply 
replacing all point symmetry groups and their elements by framework groups and 
their elements. Also, all results are equally valid for catchment regions and steepest 
descent paths of "upside down" potential energy hypersurfaces -E(K). 
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